Dersin Kodu | Dersin Adı | Dersin Türü | Yıl | Yarıyıl | AKTS |
---|---|---|---|---|---|
MYL527 | REEL ANALİZ I | Seçmeli Ders Grubu | 1 | 1 | 5,00 |
Yüksek Lisans
Türkçe
Bu dersin amacı; öğrencilerin, reel analiz ile ilgili temel tanım ve teoremleri kavramasını sağlamaktır.
Dr.Öğr.Üyesi Funda BABAARSLAN
1 | Ölçülebilir küme ve ölçülebilir fonksiyon kavramlarını tanımlayabilir ve onlarla ilgili teoremleri ispatlar |
2 | Lebesgue integrali kavramını tanımlar ve uygular. |
3 | Lebesgue İntegrali ve Riemann İntegali arasındaki ilişkiye örnek verir. |
4 | Borel kümeyi açıklar. |
5 | Ölçülebilir fonksiyon kavramını uygular. |
Birinci Öğretim
Yok
Yok
Metrik uzaylar, Açık ve kapalı kümeler, Bir kümenin yığılma noktaları, ayrık noktaları, kapanışı ve içi, Diziler ve yakınsaklık, Dizilerin yığılma ve limit noktaları, Reel sayı dizileri, liminf ve limsup, Bolzano-Weierstrass teoremi, Cauchy dizileri ve tamlık, Metrik uzayların tamlaştırılması, Tıkız (kompakt) kümeler, Tıkız kümelerin dizisel karakterizasyonu, Sınırlı ve tamamen sınırlı kümeler, R'de Heine-Borel teoremi, Sürekli fonksiyonlar, Açık, kapalı, tıkız kümelerin sürekli fonksiyonlar altında görüntü ve ters görüntüleri, Sürekli fonksiyonların karakterizasyonları, Düzgün süreklilik ve Cauchy dizileri, Fonksiyon dizilerinin noktasal ve düzgün yakınsaklığı, Sürekli fonksiyon dizileri, Düzgün yakınsak ve tıkız bir K metrik uzayı üzerinde tanımlı sürekli fonksiyonların uzayı C(K), Eşsüreklilik, tıkızlık ve Ascoli-Arzela teoremi, Yoğunluk ve Stone-Weierstrass teoremi, Türev, Vitali örtü lemması ve monoton fonksiyonların türevlenebilirliği, Sınırlı salınımlı fonksiyonlar, Mutlak sürekli fonksiyonlar, Lipschitz fonksiyonları, Riemann integrali, Adım fonksiyonları ve Riemann toplamları, Düzgün yakınsak fonksiyon dizileri ve integralleri, Noktasal yakınsaklık ve Egoroff teoremi, Sınırlı yakınsaklık teoremi
Hafta | Konular (Teorik) | Öğretim Yöntem ve Teknikleri | Ön Hazırlık |
---|---|---|---|
1 | Cebir ve Sigma Cebiri Kavramları | Yoktur | |
2 | Seçme Aksiyomu ve Sonsuz Direkt Çarpımlar | Yoktur | |
3 | Sayılabilir Kümeler | Yoktur | |
4 | Reel Sayı Sistemi, Açık ve Kapalı Kümeler | Yoktur | |
5 | Borel Kümeleri | Yoktur | |
6 | Ölçüm ve Dış Ölçüm Kavramları | Yoktur | |
7 | Ölçüm ve Dış Ölçüm Kavramları | Yoktur | |
8 | Ölçüm ve Dış Ölçüm Kavramları | Yoktur | |
9 | Ölçüm ve Dış Ölçüm Kavramları | ||
10 | Ölçülebilir Kümeler ve Lebesgue Ölçümü | Yoktur | |
11 | Ölçülebilir Kümeler ve Lebesgue Ölçümü | Yoktur | |
12 | Ölçülebilir Kümeler ve Lebesgue Ölçümü | Yoktur | |
13 | Ölçülebilir Kümeler ve Lebesgue Ölçümü | Yoktur | |
14 | Ölçülemeyen Kümeler | Yoktur |
H. L. Royden, Real Analysis, Macmillan Publishing Co. Inc., 1963. A. Mukherjea and K. Pothoven, Real and Functional Analysis, Plenum Pres, 1984. M. Balcı, Reel Analiz, Balcı Yayınları, 2000. A. Dönmez, Reel Analiz, Seçkin Yayıncılık, 2001.
Yarıyıl (Yıl) İçi Etkinlikleri | Adet | Değer |
---|---|---|
Ara Sınav | 1 | 70 |
Ev Ödevi | 1 | 30 |
Toplam | 100 | |
Yarıyıl (Yıl) Sonu Etkinlikleri | Adet | Değer |
Final Sınavı | 1 | 100 |
Toplam | 100 | |
Yarıyıl (Yıl) İçi Etkinlikleri | 40 | |
Yarıyıl (Yıl) Sonu Etkinlikleri | 60 |
Yok
Etkinlikler | Sayısı | Süresi (saat) | Toplam İş Yükü (saat) |
---|---|---|---|
Ara Sınav | 1 | 2 | 2 |
Final Sınavı | 1 | 2 | 2 |
Derse Katılım | 14 | 3 | 42 |
Ara Sınav İçin Bireysel Çalışma | 7 | 8 | 56 |
Final Sınavı içiin Bireysel Çalışma | 4 | 8 | 32 |
Ev Ödevi | 1 | 2 | 2 |
Toplam İş Yükü (saat) | 136 |
PÇ 1 | PÇ 2 | PÇ 3 | PÇ 4 | PÇ 5 | PÇ 6 | PÇ 7 | PÇ 8 | PÇ 9 | PÇ 10 | PÇ 11 | PÇ 12 | PÇ 13 | PÇ 14 | PÇ 15 | |
ÖÇ 1 | 4 | 4 | 4 | 3 | 5 | 4 | 3 | 3 | 4 | 3 | 3 | 5 | 4 | 1 | 1 |
ÖÇ 2 | 4 | 4 | 4 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 1 | 1 |
ÖÇ 3 | 4 | 3 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 3 | 4 | 3 | 1 | 1 |
ÖÇ 4 | 4 | 5 | 4 | 5 | 4 | 4 | 5 | 4 | 5 | 4 | 3 | 4 | 3 | 1 | 1 |
ÖÇ 5 | 4 | 4 | 4 | 4 | 3 | 4 | 5 | 4 | 4 | 3 | 4 | 5 | 4 | 1 | 1 |